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1) Motivation

Small Island Developing States (SIDS) have
some of the highest risks to hydro-
meteorological hazards worldwide, as well as
impacts of future climate change?.
 However, little research has quantified this risk
for current or future scenarios due to a lack of
available data at an appropriate resolution.

* The newly-released ~12m TanDEM-X global
Digital Elevation Model (DEM) provides a
renewed opportunity to assess the capacity to
improve flood estimates at a finer resolution
using remotely-sensed data.

Aim
Determine the capacity of TanDEM-X to improve

flood risk estimates in Fiji in comparison with
LiDAR and MERIT-SRTM DEM:s.

2) Study area

Ba and Nadi catchments in Fiji

LiDAR data available for
‘eround truth’ comparison for the towns in
both catchments.

Recent flood events

January 2009 = 50-yr return period (RP)
January 2012 = 50-yr RP

March 2012 = 25-yr RP

February 2016 (Cyclone Winston) = 200-yr RP
April 2018 (Cyclone Josie)

Figure 1 — Map showing the island of Viti Levu in Fiji, and the two catchments Ba and
Nadi included as study sites in this project.
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3) MEthOdS  TanDEM-X was acquired using an X-band Interferometric

Synthetic Aperture Radar, measuring canopy and building tops as
a Digital Surface Model (DSM). However, a Digital Terrain Model
(DTM) is required for accurate flood simulation.

* A progressive morphological filtering method described in Figure
2 was created to remove artefacts from the original TanDEM-X
DSM, producing TanDEM-X DTM?. Figure 3 and 4 demonstrate the
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Figure 2 — Diagram showing the sequential steps 15

implemented in the progressive morphological
filtering vegetation-removal process

Model set-up

artefact removal.

* In comparison to the LiDAR data, TanDEM-X DTM has the lowest

Height {rm

error.

Transect OBJ identified

TanDEM-X DSM

LiDAR

Figure 3 — Diagram showing the DEM difference in an area of floodplain in the Ba catchment, as well as the transect
used in the DEM cross-section in Figure 4 and the objects identified by the progressive morphological filtering method.

DEM RMSE MAE ME

TanDEM-X DSM | 2.39 2.22 2.04
TanDEM-X DTM | 2.02 1.89 1.38
MERIT 2.61 2.53 0.71
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Figure 4 — Graph showing a cross-section of DEM heights along an area of floodplain, indicating where the
TanDEM-X DTM has lower elevation values after vegetation removal.
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4) Results for Ba

F1-Score for inundation accuracy

 Fl-score measures accuracy from O (no
accuracy) to 1 (complete accuracy).

LiDAR

_ 2(Recall x Precision)

F1 =
(Recall + Precision)

e The TanDEM-X models do not simulate
the mangroves at the downstream
boundary well, meaning MERIT has the
highest F1-score.

 Without mangroves, the F1-scores for N
the TanDEM-X DTM are highest, A :
followed by MERIT then TanDEM-X Zexchuded from Fl-score
DSM, highlighting the importance of High : 10
vegetation removal. P,
DEM F1-score 0 1 2Kilometers
50-yr RP 25-yr  10-yr S
Incl.”;" Excl.”" RP  RP
TanDEM 0.762 0.864 0.825 0.730 TanDEM-X DSM TanDEM-X DTM
-X DSM
TanDEM 0.871 0.914 0.954 0.786 R
-X DTM % A

MERIT 0900 0.887 0.860 |0.773
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Vegetation pixel removal

e The TanDEM-X vegetation
processing method does
not completely remove
large patches of dense
vegetation, meaning these
areas do not flood.
Smaller artefacts are
removed well.
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Figure 6 — Maps showing the four flood extent outputs simulated by LISFLOOD-FP using the four different DEMs. a)
TanDEM-X DSM vegetation patches inhibit flooding in model output. b) TanDEM-X DTM has reduced vegetation artefact,
leading to more flooding than TanDEM-X DSM. ¢) The TanDEM-X DTM has remaining high pixel values, blocking flow paths
in the model.

* High pixel areas still present in the TanDEM-X
DTM block key flow paths, reducing the F1-score.

5) Conclusions

The TanDEM-X DTM and DSM shows better agreement with the LiDAR DEM in RMSE and MAE calculations than MERIT.

. However, when incorporated into LISFLOOD-FP, areas of vegetation in the TanDEM-X DSM and DTM limit floodplain flow. As a
result, vegetation removal is a key step required for using TanDEM-X in hydrodynamic models, and the method shown in this
poster is useful for removing isolated vegetation.

. To remove the larger areas of vegetation, the TanDEM-X 50m Global Forest/Non-Forest Map#, could be used in conjunction
with this method and may further improve the capacity of TanDEM-X in improving flood estimates.
. Further work will conduct an identical study in the Nadi catchment to identify whether these conclusions are concurrent in

another study area.
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Figure 5 — Diagram showing the input variables
/ into the LISFLOOD-FP hydrodynamic model
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