

An assessment of the probability of extreme flood flows from a national perspective: evidence supporting the National Flood Resilience Review

Rob Lamb Ross Towe Jonathan Tawn	JBA Trust and Lancaster Environment Centre Lancaster University Lancaster University		
		Nick Reynard	Centre for Ecology and Hydrology

What is the chance of an extreme flood event occurring anywhere in the country in the next 10 years? HM Government

National Flood Resilience Review

September 2016

Conventional methods assess the likelihood of "local" extremes

Extreme flood events have distinct, coherent patterns

1. Observed data standardised onto a common scale

2. Model the probability that each gauge (Yn) is extreme when gauge X is extreme, with residuals retained as coherent sets

 Create conditional models for a set of 916 gauges selected for data quality and record length, over 7-day sampling intervals

3. Monte Carlo simulation to generate many possible, spatially coherent events

Aberdeer + Return period (years) 1 in 10 years 1 in 50 years 1 in 100 years in 1,000 years Edinburg in 10,000 years Londonderry/Derry Dublin Groninger Den Haag Amber Eindhove nbourg Le Havre, arbrücken Karlond eaflet | © OpenStreetMap contributors, CC-BY-SA

Return periods of the flow at each gauge for Event ID 32873

Dependence structure in extreme river flows

Flow data plotted on a standardised scale

Black:

Observations

Red:

Simulated events representing 10,000 years of synthetic "observations"

Dependence structure in extreme river flows

Flow data plotted on a standardised scale

Black:

Observations

Red:

Simulated events representing 10,000 years of synthetic "observations"

Why the extremal dependence matters

Annual probability of at least one "event" (locally extreme river flow) somewhere in E&W

y-axis Chance of extreme river flow event occurring at a gauge somewhere in England and Wales in a period of 1, 10 or 25 years

x-axis

Relative level of extremes that is being used to define "extreme event" at any location

Results

0

10

There is nearly an 80% probability (0.78) in any one year that at least one river gauge somewhere in E&W will experience an extreme flow, even though the chance of seeing that extreme flow at any one specific location is only 1-in-100 (1%) Extremeness of flow at any river gauge, in any one year expressed as one-in-X chance of observation (bigger number = more extreme event)

1,000

10,000

100,000

x-axis

Over 25 years

100

Relative level of extremes that is being used to define "extreme event" at any location

y-axis Chance of extreme river flow event occurring at a gauge somewhere in England and Wales in a period of 1, 10 or 25 years

CEH calculated the percentage of NRFA stations with data from 1971 to 2012 in which the at-site 1/100 AEP flow was exceeded **in any given year**, first for 900 stations and then for 289 stations with pooled FEH estimates of the 1/100 AEP flows Extremeness of flow at any river gauge, in any one year expressed as one-in-X chance of observation (bigger number = more extreme event)

x-axis

Relative level of extremes that is being used to define "extreme event" at any location

Expected spatial scale

y-axis

Number of river gauges expected to experience a flow that is at least as extreme as the value defined on the x-axis in any one flood event (assuming that the flood event affects at least one such gauge)

How many river gauges should we expect to experience extreme flows in **any one event** (up to 7 days apart, here) ?

x-axis

Relative level of extremes that is being used to define "extreme event" at any location (one-in-X chance of observation at any gauge, in any year)

Conclusions

• We quantified the "hydrological risk" of extreme river flows at a national level

 There is a 78% chance in any year that at least one river gauge will experience an extreme flow of 1 – in – 100 annual probability (or worse)

- In most places, flood defences could not contain a peak flow this high
- On-going research is examining the statistical uncertainty and influence of climatic variability on this analysis