Improving statistical models for flood risk assessment

Ross Towe^{1,2}, Jonathan Tawn¹, Rob Lamb³, Chris Sherlock¹, Ye Liu⁴

1. Lancaster University 2. JBA Consulting 3. JBA Trust 4. JBA Risk Management

Current research

- A 2-year project between JBA Consulting and Lancaster University
- Aim to improve the spatial and temporal predictions of large and local scale floods
- Use the conditional extreme value model to account for the spatial and temporal dependence of extreme river flows (Keef et al., 2013)
- Record length and amount of missing data varies

Recap of the conditional extreme value model

Heffernan and Tawn (2004)

- Data are on common Laplace margins
- X is the conditioning variable
- Y is the response of interest at d sites

$$Y_i = \alpha_i X + X^{\beta_i} Z_i$$
, for $X > v$

- α and β are the two dependence parameters of the model
- The vector $\mathbf{Z} = (Z_1, \dots, Z_m)$ are the residuals of the model
- The empirical distribution of **Z** is used to generate events

Approach to handle the residual model

Model the distribution of **Z** by,

- · Kernel marginal distribution
- Gaussian copula (Z^N)

Testing:

- Can test dependence assumptions by calculating the Mahalanobis distance (Bortot et al., 2000)
- Assumptions hold for observed rainfall and river flow data sets

Benefits of the new method

- Three sites with river flow measurements on Laplace margins
- A 100 year event is observed at site 1, we want to know about the joint behaviour of the flows at sites 2 and 3

Benefits of the new method

- Three sites with river flow measurements on Laplace margins
- A 100 year event is observed at site 1, we want to know about the joint behaviour of the flows at sites 2 and 3

Further considerations

- Further simplification of the residual model
- Investigation into the definition of an event - can it be motivated by the behaviour of the physical process?
- Improve predictions for ungauged parts of the river network

References

- Bortot, P., S. Coles, and J. Tawn (2000). The multivariate gaussian tail model: an application to oceanographic data. *Journal of the Royal Statistical Society: Series C (Applied Statistics).* 49(1), 31–49.
- Heffernan, J. and J. Tawn (2004). A conditional approach for multivariate extreme values (with discussion). *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 66(3), 497–546.
- Keef, C., J. Tawn, and R. Lamb (2013). Estimating the probability of widespread flood events. *Environmetrics* 24(1), 13–21.